相关考题

问答题 气液两相的传质过程与色谱过程有许多类似之处,例如,气相通过反应器(鼓泡塔、板式塔、填料塔等)的流动可以看成是溶质通过固定相的运动,气液传质阻力可类比于气固传质阻力,气液两相的逆流操作模式也与移动床相似。此外,气液两相在界面上处于平衡状态,由Henry定律表述,与§7.2节考虑的微孔分子筛的内扩散过程类似。与色谱问题不同的是,许多气液反应器(鼓泡塔与搅拌釜)中的液相或液固两相一般都处于全混流状态,而色谱柱中固定相是静止的,移动床中固体接近平推流。试根据与移动床的类比建立如图所示的鼓泡塔反应器的稳态数学模型,图中气体从塔底加入,经分布器之后形成分散的气泡并在液体中浮升,最后从容器的上部输出;液体则从塔顶加入,从底部流出。气相中的组分A被液体吸收后在液相中发生一级化学反应。鼓泡塔中气相的流动可考虑为平推流,液相考虑为全混流。其它已知的参数为:鼓泡塔液位高度l,气含率εg,空塔气速U,加入液体的质量流率F,单位体积气液传质系数kLa,一级反应动力学常数KA,Henry系数HA。所建立的数学模型要求包括以下内容: (1)设cg和cL分别为反应组分在气相和液相中的浓度,给出其方程和边界条件;   (2)如果是强放热反应,反应热通过溶剂蒸发和气液相的连续流动移出,请自行设定有关物性参数,给出温度T满足的方程。

问答题 在水平液面上垂直插入一个半径为R的毛细管,此时液体将在表面张力的拉动下沿着管中上升。弯曲液面形成的毛细压强可以用以下Yong-Laplace方程计算式中σ为气液表面张力,θ为气液界面与固壁之间的接触角,管中流体一方面受到毛细压强的驱动而上升,一方面又受到重力和粘性阻力的作用,设流动速度遵从粘性管流的Poiseuille分布,求: (1)对于两端开口的毛细管,证明液位高度H随时间t的变化满足以下方程式中μ为液体的动力学粘度,ρg为重力。  (2)对于上端封闭的毛细管,设总管长为l,管内气体满足理想气体状态方程,试推导相应的液位高度H的变化方程。  (3)从上述方程中求出最大液位高度H和时间变化关系H(t),据此讨论H变化的趋势。

问答题 对于放热反应,当反应器尺寸增大时,其体积按长度的三次方增长,而表面积却按平方增长,因此体积增大有利于热量的增加,而体积减小有利于冷却散热。这是化学工程中说明“放大效应”的一个典型例子。根据类似的道理解释为什么生活在寒冷地区的动物一般体型较大(例如北方人就比南方人高大),而且形状趋于圆滑,而热带地区的动物体型较小且趋于瘦长(例如南方人比北方人相对较瘦,且身体凸出部分的轮廓更为明显)。

问答题 人体在自由空间中的射流形成一个夹角为α的圆锥型区域,如图所示,设U=U(x)为距喷口x处的平均流速,R=R(x)为x处的射流半径,试根据总动量pU2R2沿x方向守恒的要求确定速度U和射流区总流量Q=UR2沿x的变化关系(可相差一个常数)。

问答题 对于固体颗粒在黏性流体中的Stock流动问题,颗粒受到的阻力f仅仅与颗粒尺度d,动力学粘度μ和速度υ有关,即f=f(d,μ,υ)根据量纲齐次化的要求,物理方程等式两边的量纲应该相同,而有参数d,μ,υ组成的具有离地量纲的参量只可能是dμυ,因此上述函数关系只可能取一下形式,f=Adμυ试中A是一个只与颗粒形状有关的常数,上式即为Stock定律。现根据上述量纲分析方法分析湍流的消磁度运动。湍流中存在一系列大小不同的涡旋,能量从大尺度涡旋顺序传递给消磁度涡旋,同时将机械能耗散为热能,其中最小的涡旋尺度称为Kolmogorov尺度,在这个尺度上,黏性和能量耗散占优,因此只有运动学粘度v(m2/s)和能量耗散速率ε(W/Kg)两个产量起作用,其他物理量都可以用这两个量表示。试根据量纲齐次化原理推导出Kolmogorov尺度λ及局部速度υλ与v,ε的关系(可相差一个常数)。

问答题 烯烃在Zieglar-Natta催化剂颗粒上的气相聚合过程可用最简单的固体核模型来描述,如附图所示。气相中的烯烃单体在催化剂颗粒(图中阴影部分)表面聚合后生成一多孔的固体聚合物壳层并将催化剂包裹在内部,外部的气相烯烃单体只有扩散穿过此固体聚合物壳层后才能到达催化剂表面参与反应。试求: (1)证明单体在壳层中的扩散及聚合物粒子的生长由以下方程描述式中M为单体浓度(mol/m3),ρs为聚合物壳层的密度(kg/m3),D为单体在壳层中的扩散系数(m2/s),MW为单体的分子量,R为聚合物颗粒的半径。 (2)设催化剂核半径为rc,单体在外部气相本体中的浓度为MB,以上述参量为r和M的特征尺度,并引入适当的时间尺度,将上述方程无量纲化。然后根据气相单体与固体聚合物密度之间的巨大差别(ρs/ρg ~103)将问题进一步简化。 (3)设单体在催化剂核表面的浓度恒为0(瞬时反应),R的初始值为R0(R0>rc),求解上述简化后的模型并给出聚合物粒子半径R随时间的变化关系。

问答题 在管式反应器模型(1.4.15)中,当Pe→0时,相当于完全返混的情况。试从方程(4.15)出发,通过适当的体积积分和取极限Pe→0,导出均相釜式反应器模型。

问答题 风吹过皮肤表面时,人会有干燥凉爽的感觉,这是因为风的吹拂强化皮肤表面的对流传热与传质,形成一个速度,温度,浓度(含水量)的边界层,设流动为层流(微风),考虑出汗的蒸发潜热,求: (1)列出皮肤表面的三传问题的边界层方程,根据实际情况适当简化并给出问题的边界条件;  (2)将上述问题无量纲化,并解释所得到的各无量纲参数的物理意义;  (3)试分析速度分布,温度分布,含水量分布分别与哪些无量纲参数有关,并用简单的函数关系示意;  (4)根据所得结果定性的解释一些经验常识:为什么风越大越感觉到冷?为什么出汗后擦了汗感觉更凉快?当空气中湿度变化时,对表面散热会带来哪些影响?在冬天和夏天,人体对空气湿度的增加会有什么样的感觉?

问答题 采用微元分析法推导出柱坐标系中的不定常热传导方程。

问答题 在一个半分批式搅拌反应器中进行着一级放热化学反应,反应速率常数由Arrhenius关系式给出,反应热由釜内的冷却盘管移出,请自行设定有关的参数,导出该反应器的数学模型。

问答题 冬天的池塘水面上结了一层厚度为l的冰层,冰层上方与温度为Tw的空气接触,下方与温度为0℃的池水接触。当Tw<0℃时,水的热量将通过冰层向空气中散发,散发的热量转化为冰层增加的厚度。已知水结冰的相变潜热为Lf,冰的密度为ρ,导热系数为k,导温系数为α,求:  (1)当气温Tw不随时间变化时,给出冰层厚度随时间变化的关系,若Lf=3.35×105J/kg,ρ=913kg/m3,k=2.22W/m。K,Tw=-10℃,问冰冻三尺,需几日之寒?  (2)当气温随时间变化时,设Tw=Tw(t)已知,导出冰层厚度变化的完整数学模型。