问答题
设A为n阶矩阵,如果称A为对角优势阵。证明:若A是对角优势阵,经过高斯消去法一步后,A具有形式
则A2是对角优势阵,故高斯消去法与部分选主元高斯消去法对于对称的对角优势阵每一步均选取同样的主元,得出的是同样的结果。
问答题 由高斯消去法说明当Δi≠0(i=1,2,...,n-1)时,则A=LU,其中L为单位下三角阵,U为上三角阵。
问答题 设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零。
问答题 (a)设A是对称阵且a11≠0,经过高斯消去法一步后,A约化为 证明A2是对称矩阵。 (b)用高斯消去法解对称方程组: